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Abstract

In the present work, we explored the possibility of using near-infrared spectroscopy in order to quantify the degree of adulteration of
durum wheat flour with common bread wheat flour. The multivariate calibration techniques adopted to this aim were PLS and a wavelet-based
c entage of
a rticular the
W s models.
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alibration algorithm, recently developed by some of us, called WILMA. Both techniques provided satisfactory results, the perc
dulterant present in the samples being quantified with an uncertainty lower than that associated to the Italian official method. In pa
ILMA algorithm, by performing feature selection, allowed the signal pretreatment to be avoided and obtaining more parsimoniou
2005 Elsevier B.V. All rights reserved.

eywords: NIR spectroscopy; Multivariate calibration; PLS; WILMA; Wavelet transform; Durum wheat adulteration

. Introduction

NIR spectroscopy is nowadays a widespread technique
sed in many fields of analytical chemistry, including the
uality control of foodstuffs[1–4]. In comparison with other
nalytical techniques, such as classical wet analysis, its
dvantages are essentially rapidity, cheapness and the fact
f being a non-destructive method. Furthermore, in the last

wo decades, the application of NIR spectroscopy as routine
uality control analysis has gradually increased thanks to the
ossibility of its on-line implementation[5–8].

In the field of cereal analysis, NIR spectroscopy in associa-
ion with chemometrics has been used since the late seventies
9], being successful in modelling many quality variables,
uch as protein, moisture, dietary fibre contents, and wheat
ardness[10–16]. More recently, the applications of NIR
pectroscopy on cereals have been focused on the predic-
ion, only partially successful, of functional and technological
arameters, such as flour yield, percentage of damaged starch,

∗ Corresponding author. Tel.: +39 059 2055029; fax: +39 059 373543.

water absorption, dough development, time extensibility
loaf volume[9,12].

However, to our knowledge, an interesting composit
related aspect of wheat has not yet been considered. W
for human feeding can be essentially distinguished in
species, i.e., durum wheat (Triticum durum) and bread w
(Triticum aestivum), which are characterized by differe
chemical and physical properties that give rise to diffe
quality, nutritional contribution and, consequently, comm
cial value of the final products[17–20]. Italian law establishe
that pasta can be made only by durum wheat semolina
water [21]. The addiction of bread wheat flour is an ad
teration that leads to a product with a scarce resistan
cooking and therefore of lower quality. However, since
accidental contamination of semolina with bread wheat
ing harvesting, transport or storage remains possible,
allowed the presence of bread wheat flour in percentage
higher than 3%[22]. The problem of durum wheat adult
ation with common bread wheat is of particular interest in
Italian, French and Spanish markets, where semolina
only allowed constituent for pasta, while in the north Eu
pean countries both bread and durum wheat are allowe
E-mail address: cocchi.marina@unimore.it (M. Cocchi).
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Presently, the Italian official method for determining this
type of fraud is the Resmini analysis[23,24], which is based
on electrophoretical separation of albumins. The Resmini
method gives repeatable results for percentages of bread
wheat higher than 2% and in the 2–15% range, with an
uncertainty of±1%, while for greater amounts of adulter-
ant the uncertainty is higher. Besides the Resmini method
and other similar electrophoretical techniques[20,25], i.e.,
A-PAGE and SDS-PAGE, other methods are employed, such
as real-time polymerase chain reaction (PCR)[26–28] and
reverse-phase high performance liquid cromatography (RP-
HPLC) of water-soluble proteins[29,30]. These methods
provide a high sensitivity and a satisfactory accuracy, but
they require specialized personnel, quite long analysis times
and high costs. Therefore, frequently, the routine analysis
laboratories make use of the immunological Durotest© kit
(Rhone Poulenc Diagnostic Ltd.), that allows to detect the
non-durum wheat adulteration of semolina using a mono-
clonal antibody, which is specific to the protein friabilin,
present only in bread wheat. If non-durum wheat is present in
the sample, the friabilin and the antibody form a complex that,
with the addition of a coloured staining reagent, assumes a
blue–purple colour. The intensity of the colour, assessed with
respect to a 3% non-durum wheat standard, is proportional
to the percentage of adulterant and gives a semi-quantitative
response, which is essentially used to estimate the presence or
a tative
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Since chemometrics has a fundamental role in NIRS based
calibration, another important aspect to be taken into account
is the method performance in deriving the calibration models
[31,32]. In general, one of the most powerful chemometric
techniques used in NIRS calibration is partial least squares
(PLS), since it usually gives very stable regression models.
Anyway, changes in the ambient and/or instrumental con-
ditions can lead to modifications in the signal shape (e.g.,
baseline shift), which often result in a lower predictive capa-
bility of the models themselves, furthermore the presence
of many uncorrelated/noisy variables can lead to not enough
robust models. For this reason, both signal pretreatment tech-
niques[33–35] and/or feature selection techniques coupled
to the calibration step[36–38], can give more satisfactory
results.

In this context, we propose the use of a novel feature selec-
tion/calibration algorithm recently implemented by some of
us, wavelet interface to linear modelling analysis (WILMA)
[39]. This algorithm makes use of the advantages offered
by the wavelet transform[40–42], which is a signal analy-
sis method capable of compressing in few variables (wavelet
coefficients) the information contained in the signal, which
is relevant to the prediction of the dependent variable (in our
case, the percentage of bread wheat flour).

In the present work, PLS and WILMA were applied both
on the raw and on the SNV pretreated spectra. The models
o oss-
v ying
a

2

2

g a
F with
a ange
4

2

read
w and
i to:

• lim-

• els;
• ntil

ent
lling

roll
m lled
a ped
bsence of non-durum wheat, rather than giving a quanti
esponse.

It is therefore clear that all the above described m
ds show some important drawbacks, and that it c
e of great value to develop calibration models base
IR spectra, able to furnish the percentage of adulte
ithin short times, in a simple manner, and with v

ow costs. The potential spreading of this approach c
lso be high, taking into account that nowadays mos

he mills and of the pasta factories are already prov
ith NIR spectrophotometers, for monitoring process qu
ontrol.

At this time, the present work should be considered
reliminary study in order to verify the potential efficacy

he proposed procedure, but it does not yet constitute a
or implementing a method to be used in the routine
rol of commercial wheat samples. In fact, optimal opera
onditions have been selected to evaluate if the NIR s
ra show sufficient variation going from pure durum wh
emolina to mixtures containing small percentages of b
heat. In order to eliminate the variability in the perce
ge of bread wheat flour due to the uncertainty assoc
ith the traditional analytical methods, a set of artificial s
les with known content of adulterant has been constru
nly after the verification of the suitability of the propos
rocedure, i.e. after demonstrating that NIR spectra co
elevant information in order to discriminate the two c
gories of wheat from which the flour is made, it will
ossible to plan more realistic designs based on a wide
ommercial samples.
btained have been carefully validated both with the cr
alidation procedure and with the use of two test sets, pa
ttention to avoid overfitting.

. Experimental

.1. Instrumentation

All spectra were acquired in reflectance mode usin
OSS NIRSystem 6500 spectrophotometer, equipped
monochromator and a quartz sample cell, in the r

00–2498 nm with a 2 nm resolution.

.2. Samples

Equal quantities of Italian durum wheat in grains and b
heat in grains (belonging to the most diffuse national

nternational varieties) have been separately subjected

a cleaning step using mechanical oscillating sieves to e
inate pebbles, straw and stunted kernels;
a manual cleaning step for removing extraneous kern
a conditioning step, by addition of distilled water, u
they reached 17% of moisture after 24 h. This treatm
makes easier the removal of the bran during the mi
step.

After conditioning grains have been milled in proper
ills, with a yield of 75%, and then they have been mi
gain with an electric mill Fritsch Pulverisette 14, equip
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with a sieve ring with trapezoid perforation 0.080 mm, reach-
ing a more homogeneous particle size, in order to reduce
scattering problems during acquisition of the NIR spectra.

The obtained durum and bread wheat flours have then been
used to prepare 29 mixtures of durum wheat flour added with
different percentages of bread wheat flour, ranging from 0 to
7%, with a step of 0.25%. In order to do that, the following
procedure has been adopted:

• weighing at the fourth decimal digit, with a Mettler AE
200 balance, of the flour amounts necessary to furnish a
12 g sample;

• homogenisation in agate mortar for 10 min;
• sampling two replicates of 3 g each, suitable for the cell

filling, by coning and quartering procedure, for a total of
58 samples (29× 2 replicates).

In order to account for day-to-day variability, the first 29
samples have been analysed in a single day and in randomised
order, while the respective replicates have been analysed the
day after in reverse order.

2.3. Data analysis

All PLS calibration models have been calculated on the
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• finally, the optimal decomposition level is chosen as the
one giving the best results in LOO crossvalidation.

Once the optimal regression model (MLR and/or PLS) has
been selected, it can be validated by means of an external test
set, whose signals are decomposed in the FWT domain until
the optimal decomposition level, in order to get the wavelet
coefficients corresponding to those previously selected and
used as descriptor variables.

Moreover, the wavelet coefficients selected with this pro-
cedure constitute a set of descriptor variables, which can be
eventually fed also to different regression techniques, includ-
ing non-linear methods, such as neural networks. In addic-
tion, for interpretative purposes, both the selected wavelet
coefficients and the calculated regression coefficients can be
reconstructed into the original domain by the inverse FWT.
This can help in focusing those signal regions, whose contri-
bution is relevant to model the response variables.

One of the most important aspects when dealing with
FWT in regression tasks is the choice of the best wavelet
filters. In this work, 21 wavelets belonging to five differ-
ent families were considered: daubechies (db1/db10); symlet
(sym4, sym7, sym8); coiflet (coif1, coif3, coif5); biorthog-
onal (bior2.4, bior4.4) and reverse biorthogonal (rbio3.1,
rbio3.3, rbio3.9). Both MLR and PLS regression techniques
with column-wise mean-centering of the original signals have
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olumn-wise mean centred variables, both before and
he SNV pretreatment[33].

As far as WILMA is concerned, a detailed description
he algorithm may be found in the original article[39], while
n the present work only its main aspects of interest are br
xplained.

WILMA essentially uses for calibration purposes the p
ibilities offered by the wavelet transform (WT)[40–42]. The
fficacy of WT derives from its ability to represent the s
al in an alternative domain as a function both of freque
scale) and of the original domain. Therefore, WT allo
odelling both point and shape characteristics of an in
ental signal. WILMA is based on the fast wavelet transf

FWT) decomposition, which consists in recursively split
he low frequency content and the high frequency conte
he signal into two orthogonal sub-spaces called approx
ions and details, respectively. The optimal calibration m
s automatically selected by WILMA algorithm on the ba
f the following procedure:

each signal is decomposed into the wavelet domai
FWT until its maximum level of decomposition;
the wavelet coefficients of each decomposition leve
ranked either according to their variance (V) or to t
squared values of the correlation coefficient (R2) or of the
squared covariance (C2) with the response variable;
for each level, the optimal number of wavelet coefficie
is iteratively selected by crossvalidation using the le
one out (LOO) procedure either with multilinear regress
(MLR, in this case high intercorrelated coefficients are
removed), or PLS;
een applied to the wavelet coefficients, ranked accordi
he three different criteria,R2, C2 andV. All the combination
esulting from the parameters listed above have been te
eading to 126 cycles of calculation.

The performance of the PLS and the WILMA models
valuated by LOO crossvalidation and by two validation s
n particular, the 58 samples have been divided in three
ets: a training set, composed by 30 samples; a monit
et, of 14 samples; a test set, also comprising 14 sam
s far as the PLS models are concerned, the optimal
er of latent variables has been chosen on the basis
onitoring set and then the predictive capability has b

valuated on the test set. Conversely, with WILMA the m
toring set has been used in order to choose the best
f calculation among the 126 performed (as previously
ere the number of PCs is selected by LOO crossvalida
hile also in this case the test set has been used to fi
valuate the predictive capability of the selected model.
wo replicates of each sample have been kept together
ame set. The subdivision of the samples in three set
een performed randomly, with the only care of includin

he training set samples showing the extreme values of b
heat flour percentage.

.3.1. Software
WILMA has been written in Matlab© ver. 6.1 languag

nd uses some routines from the Wavelet Toolbox ver
or Matlab© [43], and from the PLS Toolbox ver. 2.1.1[44]
or Matlab©, which has been also used to calculate the
odels.
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Fig. 1. NIR spectra of all the samples before (a) and after (b) the SNV
pretreatment.

3. Results and discussion

All the acquired spectra are reported inFig. 1, which shows
the signals before (a) and after (b) SNV normalization. It is
possible to notice that the original spectra present a light
vertical shift of the baseline, affecting all the spectral region,

which is probably due to little differences in the scattering
behaviour of the samples. As it can be seen, this baseline
shift can be successfully eliminated pretreating the signals
by SNV. The discontinuity of the signal at 1100 nm is caused
by the change of the detector, from the silicon diode array to
the lead sulphide photoconductor.

Table 1reports the results of the regression models cal-
culated both on the raw and on the SNV pretreated spectra
by PLS and only on the raw spectra by WILMA. In fact,
in this case, the results obtained from the SNV pretreated
spectra were very similar and showed no improvement with
respect to those obtained from the raw spectra. This is a con-
sequence of the fact that the variable selection performed
in the wavelet domain removes implicitly the uninformative
variability, making the SNV pretreatment unnecessary. As
far as WILMA is concerned, only the results relative to the
best models obtained for each regression technique and rank-
ing criterion have been reported. The models highlighted in
grey are those considered as the best performing ones and are
discussed in detail.

As for PLS, it is clear that the spectra pretreatment
improves the quality of the model both in calibration and
in prediction. The predicted versus experimental plot of the
PLS model computed on the normalized spectra, which is
reported inFig. 2, confirms that all the samples are modelled
satisfactorily. Furthermore, the root mean squares errors of
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Table 1
Performance of the best calibration models developed by PLS and WILMA

Regression method Pretreatment Ranking criterion Wavelet ◦cf t

PLS None 105
SNV 105

WILMA–MLR C2 db1 7
None R2 coif3

V db6

WILMA–PLS C2 db6 5
None R2 db8 6

V db8 5

The calibration models selected for discussion are highlighted in grey colour
alculations (RMSEC) and of prediction (RMSEP) values
omparable and around 0.5% (the root mean squared
re expressed in the same scale as the percentage o
heat flour present in the samples), which is lower than
% associated with the Italian official method.

The plot of the pseudo-regression coefficients of
odel (Fig. 3) provides some indications about the spe

egions that are mainly correlated with the response vari
t is interesting to notice that the model keeps informa
rom most part of the spectral range, but in particular f
he visible region, with the exclusion of the 1100–1400
egion.

As for the WILMA models, they have, in general, a p
ictive capability similar to that of the SNV–PLS mod
sing a relatively low number of coefficients. As it can
een, the different WILMA models present similar per
ances, hence we decided to discuss the best calib

ns n◦LV RMSEC RMSECV RMSEPmon RMSEPtes

0 6 0.5334 0.8126 0.5056 0.5215
0 8 0.2903 0.7215 0.4165 0.3974

– 0.4627 0.6013 0.5040 0.4863
4 – 0.5790 0.6889 0.6679 0.5602
8 – 0.3242 0.4569 0.7320 0.5041

0 7 0.3913 0.6335 0.5889 0.4684
0 7 0.3276 0.6264 0.5077 0.4470
7 7 0.3138 0.8124 0.6144 0.5141

.
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Fig. 2. Predicted vs. measured plot for the PLS model obtained on the nor-
malized spectra.

model obtained using the PLS regression technique (with
R2 as ranking criterion and with the db8 wavelet) in order
to get direct comparison with the simple SNV–PLS model.
Fig. 4 reports the plot of the predicted versus experimental
values for the WILMA–PLS model highlighted in grey in
Table 1. This calibration model is quite parsimonious both
for the number of coefficients (60) and for the number of
latent variables (7). The root mean squared errors are still
acceptable and remain lower than 1%.

Since only a part of the information contained in the orig-
inal spectra has been selected, the signals reconstructed in
the original domain from the selected wavelet coefficients
look very different with respect to the original spectra, as
it can be observed inFig. 5. Comparing the reconstructed
signals with the original spectra it is possible to identify the
more relevant regions, which contain information correlated
with the response variable. According to the PLS pseudo-
regression coefficients plot ofFig. 3, WILMA has extracted

F ed on
t

Fig. 4. Predicted vs. measured plot for the WILMA model obtained on the
raw spectra with a db8 wavelet, level 7, PLS as regression technique andR2

as the ranking criterion.

Fig. 5. Comparison between the NIR spectra of all the samples (a); the
reconstructed spectra in the original domain on the basis of the wavelet
coefficients selected by the WILMA model (b) and the difference spectra,
after taking the second derivative, between a pure durum wheat sample and
a pure wheat flour sample (c).
ig. 3. Pseudo-regression coefficients plot for the PLS model obtain
he normalized spectra.
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useful information along all the spectral range, and particu-
larly in the visible region between 400 and 500 nm. Other rel-
evant regions are those in the ranges 1000–1200, 1400–1600
and 2000–2100 nm, which in the major part have been also
selected from the PLS model. It is interesting to notice that
the same spectral regions have been also selected by sev-
eral others among the WILMA calculation cycles reported in
Table 1, this convergence confirms the statistical significance
of those signal regions.

In the literature[3] different attributions of the NIR bands
lying in these spectral regions are cited, relative to agricultural
and food products. In particular, the overtones of the C–H
bonds of the methylic and methylenic groups between 1170
and 1230 nm, the bands of the O–H bonds due to water and
starch at about 1450 and 1940 nm, and the bands of the N–H
bonds at about 1500–1570 and 2050–2070 nm are mentioned.
The spectral region at higher wavelengths is characterized
by the absorptions of constituents like starch, cellulose and
protein. Part of this information has been probably used by
WILMA also for the baseline correction.

The results obtained in this work suggest that the pres-
ence of bread wheat flour in durum wheat one produces a
detectable effect on the corresponding NIR spectra.

The raw spectra of a pure durum wheat sample and a pure
wheat flour sample are indeed very similar, by their direct
comparison it is only possible to observe that the durum wheat
s sible
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sary when such a method is used. These results, even if
obtained on a limited number of samples can be seen as an
exciting starting point for the extension of the procedure to
practical applications, even if a lot of work is still needed in
this direction. In effect, encouraged from this evidences, it is
now possible to consider a wide number of “real” samples
from the trade, in order to construct calibration models and
to perform extended validation.
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